

Data sheet

Float valves Types SV 1 and SV 3

The SV 1 and 3 can be used separately as a modulating liquid level regulator in refrigerating, freezing and air conditioning systems for ammonia or fluorinated refrigerants.

However, in most cases, the SV is used as a float pilot valve for the main expansion valve type PMFH.

Technical data

- Refrigerant
- Applicable to HCFC, HFC and R717 (Ammonia). • *P* band
 - 35 mm
- Temperature of medium
 −50 to +65°C
- Max. working pressure PS = 28 bar
- Max. test pressure
 p' = 36 bar

- k_v value for float orifice
 SV 1 = 0.06 m³/h
 SV 3 = 0.14 m³/h
- The highest $k_{\rm v}$ value for the built-in throttle valve is 0.18 m³/h. The throttle valve can be used both in parallel and in series with the float orifice.
- Classification: DNV, CRN, BV, EAC etc. To get an updated list of certification on the products please contact your local Danfoss Sales Company.

Approvals

Pressure Equipment Directive (PED) SV1 and 3 are approved in accordance with the European standard specified in the Pressure Equipment Directive and are CE marked.

 SV1 and 3

 Classified for
 Fluid group I

 Category
 I

For further details / restrictions - see Installation Instruction

Data sheet | Float valves, types SV 1 and 3

Identification

Dimensioning example for SV (L)

R717 (NH₃) Evaporating capacity Q_e= 27 kW

Refrigerant

Evaporating temperature $t_e = -10^{\circ}C$ (~ $p_e = 2.9$ bar abs.) Condensing temperature $t_c = +30^{\circ}C$ (~ $p_c = 11.7$ bar abs.) Liquid temperature for SV $t_l = +20^{\circ}C$ Subcooling

 $\Delta t_{sub} = t_c - t_l = 30^{\circ}C - 20^{\circ}C = 10 \ K$

Pressure drop in SV $\Delta p = p_c - p_e = 11.7 - 2.9 = 8.8$ bar Correction factor k for 10 K subcooling 0.98

Corrected capacity $27 \times 0.98 = 26.4 \text{ kW}$

At t_e = -10°C and Δp = 8 bar SV 1 yields 27 kW and can therefore be used.

If SV 3 is used for this capacity, it will mean a small offset.

Ordering

Regulator

The code nos. stated apply to float valves, types SV 1 and SV 3 incl. \emptyset 6.5 / \emptyset 10 mm weld connection ¹) for the pilot line. Balance tube connection (liquid/vapour): 1 in. weld / 1 ¹ / ₈ in. solder.											
The rated capacity refers to the valve capacity at evaporating temperature $t_e = +5$ °C, condensing temp. $t_c = +32$ °C and liquid temperature $t_i = +28$ °C.											
	Rated capacity in kW										
Valve type	Code no.	R717	R22	R134a	R404A	R12	R502				
SV 1	027B2021	25	4.7	3.9	3.7	3.1	3.4				

13

10.0

¹) ¾ in. flare connection can be supplied under code no. **027B2033.**

64

027B2023

Spare parts and accessories See spare parts catalogue.

Pipe dimensions

Liauid line

SV 3

The following suggested dimensions for the liquid line, which is connected to the nipple pos. C, see "Design / Function", are based on a maximum velocity in a line with subcooled

ammonia of *approx. 1 m/s* and a *maximum* velocity in a line with subcooled fluorinated refrigerant of *approx. 0.5 m/s*.

9.7

7.9

8.8

1. R717 (ammonia)

Туре	Dimensions							
	0.8 bar $< \Delta p_{sv} < 4$ bar	4 bar < Δp_{sv} < 16 bar						
	Steel tube	Steel tube						
SV 1	³ / ₈ in.	³/₀ in.						
SV 3	³ / ₈ in.	¹ / ₂ in.						

2. R22, R134a, R404A

		Dime	nsions			
Туре	0.8 bar < ∆	ap _{sv} < 4 bar	4 bar < Δp_{sv} < 16 bar			
	Steel tube	Copper tube	Steel tube	Copper tube		
SV 1	3/8 in.	³/ ₈ in.	³/8 in.	1/ ₂ in.		
SV 3	³/8 in.	⁵/₃ in.	1/2 in.	³ / ₄ in.		

Upper balance pipe (connect to pos. D on SV (L)

Туре	Dimensions					
SV (L) 1	1 in.					
SV (L) 3	1 ¹ / ₂ in.					

Capacity

The values in the capacity tables are based on a subcooling of 4 K just ahead of the SV valve.

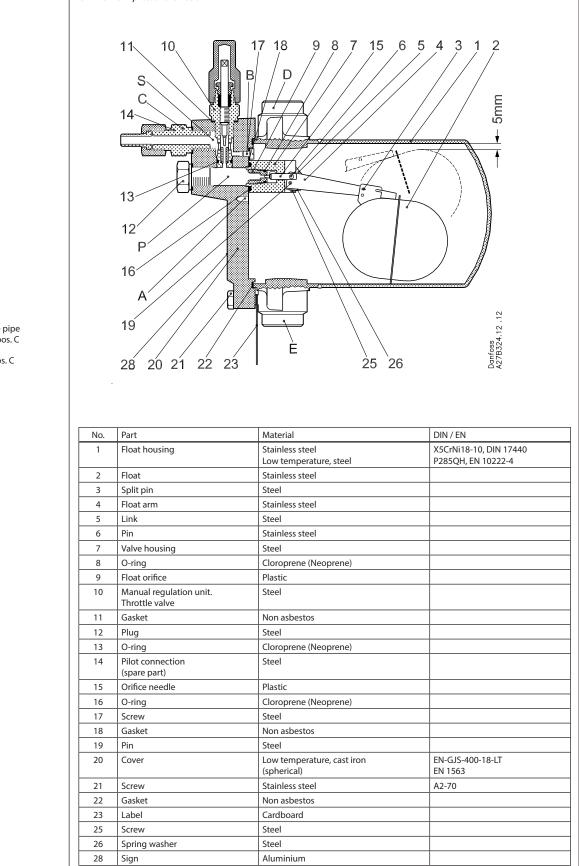
If the subcooling is more or less than 4 K, refer to the following correction factors.

Type Evaporating temperature t _e									Туре	Evaporating temperature	Capacity in kW at pressure drop across valve Δp bar								
	°Č	0.8	1.2	1.6	2	4	8	12	16		°Č	0.8	1.2	1.6	2	4	8	12	16
						R	717	7 (N	H ₃)									F	R22
	+10	9.5	11	13	15	20	27	30			+10	2.2	2.6	3.0	3.2	4.2	4.8	5.7	5.7
	0	9.9	12	14	15	20	27	31	33		0	2.3	2.7	3.1	3.4	4.4	4.9	5.8	5.8
	-10	10	12	14	15	21	27	31	33		-10	2.4	2.8	3.2	3.5	4.5	5.0	5.8	5.9
SV 1	-20	11	12	14	15	21	27	30	33	SV 1	-20	2.4	2.9	3.3	3.6	4.6	5.0	5.8	5.8
	-30	11	12	14	15	20	26	30	33		-30	2.5	2.9	3.3	3.6	4.5	5.0	5.7	5.7
	-40	11	13	14	15	20	26	29	32		-40	2.5	2.9	3.3	3.6	4.4	4.9	5.6	5.6
	-50	11	12	13	15	20	26	29	32		-50	2.6	2.9	3.3	3.5	4.3	4.8	5.4	5.4
	+10	25	31	35	39	52	71	77			+10	5.6	6.8	7.7	8.5	11	13	15	15
	0	26	32	36	40	52	69	78	83		0	5.8	7.0	8.0	8.8	11	13	15	15
	-10	26	32	36	40	52	68	77	83		-10	6.0	7.3	8.2	9.0	12	13	15	15
SV 3	-20	26	31	35	39	52	67	76	82	SV 3	-20	6.1	7.3	8.3	8.9	11	13	14	15
	-30	25	30	34	38	50	66	75	82		-30	6.2	7.3	8.1	8.8	11	12	14	14
	-40	24	29	33	36	49	65	73	80		-40	6.1	7.1	7.9	8.5	11	12	14	14
	-50	23	27	31	35	47	64	71	79		-50	5.9	6.9	7.6	8.2	11	12	13	14

Correction factors

When dimensioning, multiply the evaporator capacity by a correction factor k dependent on the subcooling Δt_{sub} just ahead of the valve. The corrected capacity can then be found in the capacity table.

R717 (NH3)


Δt K	2	4	10	15	20	25	30	35	40	45	50
k	1.01	1.00	0.98	0.96	0.94	0.92	0.91	0.89	0.87	0.86	0.85
R22											
Δt K	2	4	10	15	20	25	30	35	40	45	50
k	1.01	1.00	0.96	0.93	0.90	0.87	0.85	0.83	0.80	0.78	0.77

Data sheet | Float valves, types SV 1 and 3

Design Function

SV with low-pressure function

- C. Nipple D. Connection for balance pipe
- P. Parallel connection of pos. C (screw 17 in pos. A)
- S. Series connection of pos. C (screw 17 in pos. B)

Design Function (continued) SV (L), low-pressure function SV (L) is used for small, flooded evaporators, where only slight variations in the liquid level can be accepted. When the liquid level falls, the float pos. (2)

(15) away from the orifice and the amount of liquid injected is increased.

The liquid inlet line, which is mounted on the nipple pos. (C), should be dimensioned in such a way that acceptable liquid velocities and pressure drops are obtained.

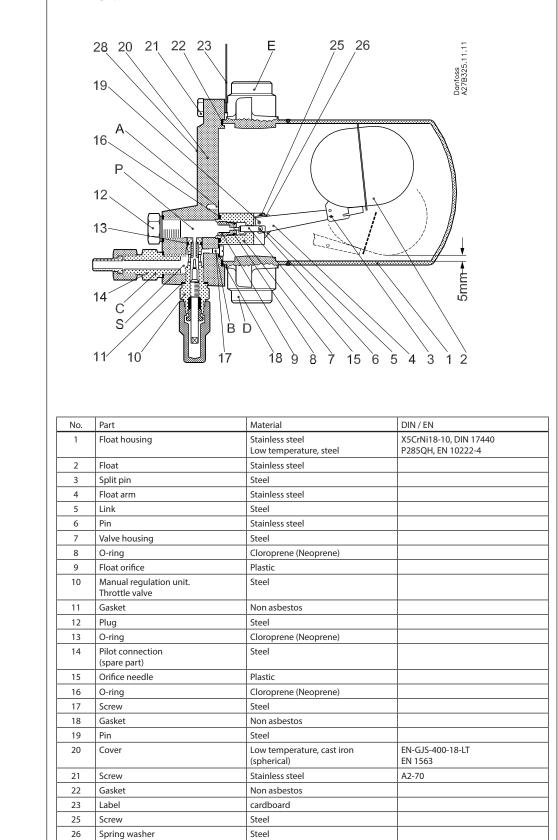
This is particularly important when the liquid is only slightly subcooled, since valve capacity is reduced considerably if flashgas occurs in the liquid ahead of the orifice and wear is strongly increased.

See the suggested dimensions for the liquid line in "Pipe dimensions".

The flashgas quantity which occurs on expansion is removed through the balance pipe from pos. (D). On refrigeration plant using fluorinated refrigerants, slight subcooling and a large pressure drop can give a flashgas quantity of approx. 50% of the injected liquid quantity. *Therefore the pressure drop in this balance pipe must be kept at a minimum*, since there will otherwise be a risk that

the liquid level in the evaporator will vary to an unacceptable degree as a function of evaporator load

the absolute difference between the liquid level of the evaporator and the SV valve will be too large.


See the suggested dimensions for the balance pipe in "Pipe dimensions".

Data sheet | Float valves, types SV 1 and 3

Design Function (continued)

SV with high-pressure function

Aluminium

- C. Nipple
- D. Connection for balance pipe
- P. Parallel connection of pos. C
- (screw 17 in pos. A) S. Series connection of pos. C (screw 17 in pos. B)

28

Sign

DANFOSS A27B25.12

Design Function (continued) SV (H), high-pressure function

SV (H) is used as a liquid level regulator for small condensers or receivers. When the liquid level rises, the float pos. (2)

moves upwards. This draws the needle pos. (15) away from the orifice and the excess liquid is drawn away.

On refrigeration plant using fluorinated refrigerants slight subcooling and a large pressure drop can, as already mentioned, cause the formation of a large amount of flashgas. This mixture of liquid and vapour has to pass through the nipple pos. (C) and out into the liquidline.

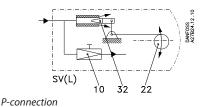
If the dimensions of the line are too small, a pressure drop will occur which can reduce the capacity of the SV (H) valve considerably. This will mean a risk of inadvertent liquid accumulation in the condenser or receiver.

See the suggested dimensions for the liquid line in "Pipe dimensions".

10 32 22

With S-connection the throttle valve 10

will function as a pre-orifice on SV (L) and

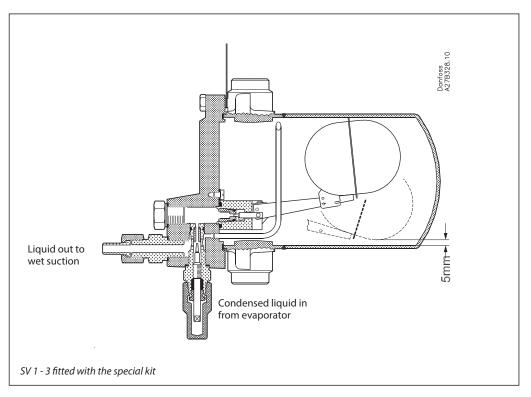

SV(L)

S-connection (= series)

as a post orifice on SV (H).

S-connection

The connection nipple (C) can be mounted either in P or in S.

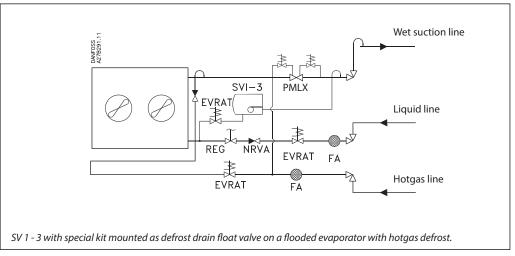


r-connection

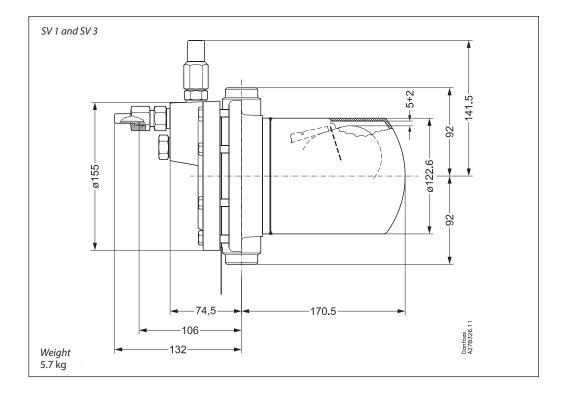
P-connection (= parallel) With P-connection an SV with closed float orifice will have a capacity which corresponds to the degree of opening of the adjustable throttle valve 10.

SV 1 - 3 can be used as a defrost drain float valve, when one balance pipe is sealed off and the liquid level regulator is mounted with a special kit (code no. 027B2054) consisting of:

- Special orifice and orifice needle with a larger k_v-value of 0.28 m³/h.
- · Gas drain pipe



SV 1 - 3 used as a high pressure defrost drain float valve



SV 1 - 3 used as a high pressure defrost drain float valve (continued)

Application example

Dimensions and weight

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.