Multifunctional rotary actuator for butterfly valves

- Torque 400 Nm
- Nominal voltage 24 V
- Control: configurable
- Position feedback: configurable
- 2 Auxiliary switches
- State at loss of signal: closed

Technical data

Electrical data

Nominal voltage	AC $24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ AC/DC $24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	For 3-lead connection For 4-lead connection			
Power supply range	AC/DC 21.6 ... 26.4 V				
Power consumption	180 W @ nominal torque				
Current consumption	6.0 A				
Auxiliary switch	$2 \times \mathrm{EPU}, 5 \mathrm{~A}, \mathrm{AC} 230 \mathrm{VIII} \underset{=}{\mathrm{I}}$ Switching points: $90^{\circ} \Varangle$				
Connection	Terminals, $2 \times 1.5 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}^{2}$				
Parallel connection Supply voltage Controller signals	Not possible Only possible for 4-lead connection				
Functional data			Variable		Settings
Torque (nominal torque)	Min. 400 Nm @ nominal voltage				
Control $\begin{array}{l}\text { Control signal } Y \\ \text { Operating range }\end{array}$	DC $0 \ldots 10 \mathrm{~V}$, input impedance $100 \mathrm{k} \Omega$ DC $0.5 \ldots 10 \mathrm{~V}$		Starting point DC $0.5 \ldots 30 \mathrm{~V}$ End point DC $2.5 \ldots 32 \mathrm{~V}$		
Control Control signal Y	4 mA ... 20 mA		Non-variable		
Position feedback Measuring voltage U_{5}	$\begin{aligned} & \text { DC } 0 \ldots 10 \mathrm{~V} \text {, max. } 0.5 \mathrm{~mA} \\ & \text { DC } 2 \ldots 10 \mathrm{~V} \text {, max. } 0.5 \mathrm{~mA} \end{aligned}$		Starting point DC $0.5 \ldots 8 \mathrm{~V}$ End point DC $2.5 \ldots 10 \mathrm{~V}$		
	4 mA ... 20 mA		Non-variable		
Position accuracy	$\pm 5 \%$ absolute				
Manual override	Temporary with handwheel (not revolving)				
Angle of rotation	$90^{\circ} \Varangle$ (internal limit switch)				
Angle of rotation limiting	MAX (maximum position) MIN (minimum position) ZS (intermediate position)	$\begin{aligned} & =100 \% \\ & =0 \% \\ & =50 \% \end{aligned}$	$\begin{aligned} & \text { MAX }=(\text { MII } \\ & \text { MIN }=0 \% \\ & \text { ZS }=\text { MIN } \end{aligned}$	$\begin{aligned} & \left.+32^{\circ} 4\right) \ldots 100 \% \\ & \left(\operatorname{MAX}-32^{\circ} \Varangle\right) \\ & \text {.. MAX } \end{aligned}$	
Running time	16 s				
Duty cycle	75\% (e.g. 16s / 6s)				
Sound power level	Max. 70 dB (A)				
Position indication	Mechanical (integrated)				
Safety					
Protection class	III Safety extra-low voltage				
Degree of protection	IP67				
EMC Low-voltage directive	CE according to 2004/108/EC CE according to 2006/95/EC				
Certification	Tested in accordance withEN 61000-6-2 : 2005EN 61000-6-4: 2007				
Mode of operation	Type 1 (EN 60730-1)				
Rated impulse voltage	500 V (EN 60730-1)				
Control pollution degree	4 (EN 60730-1)				
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}$				
Medium temperature	$\begin{aligned} & -20 \ldots+120^{\circ} \mathrm{C} \text { (in the butterfly valve) } \\ & \text { max. } 130^{\circ} \mathrm{C} / 1 \mathrm{~h} \\ & \hline \end{aligned}$				
Non-operating temperature	$-30 \ldots+80^{\circ} \mathrm{C}$				
Ambient humidity	95\% r.H., non-condensating (EN 60730-1)				
Maintenance	Maintenance-free				

Technical data	(continued)
Mechanical data Connection flange ISO 5211/ F10 Housing material Cast aluminium Dimensions / Weight Dimensions See «Dimensions» on page 6 Weight Approx. 22 kg l	

Safety notes

- The actuator has been designed for use in stationary heating, ventilation and air conditioning systems and is not allowed to be used outside the specified field of application, especially in aircraft or in any other airborne means of transport.
- It may only be installed by suitably trained personnel.

Any legal regulations or regulations issued by government agency authorities must be observed during assembly.

- The device does not contain any parts that can be replaced or repaired by the user.
- The device contains electrical and electronic components and is not allowed to be disposed of as household refuse. All locally valid regulations and requirements must be observed.

Product features

Mode of operation
The actuator is controlled with a standard modulating signal and travels to the position defined by the control signal. The measuring voltage U serves for the electrical display of the actuator position $0 . . .100 \%$ and as slave control signal for other actuators.

Parameterisable actuators Input and output signals and other parameters can be altered with the BELIMO Service Tool, MFT-P.

Simple direct mounting Simple direct mounting on the butterfly valve. The mounting position in relation to the butterfly valve can be selected in $90^{\circ} \Varangle$ steps.

Manual override The butterfly valve can be closed (turn clockwise) and opened (turn counterclockwise) with the handwheel. The handwheel does not move while the motor is running.

Internal heating An internal heater prevents condensation buildup.
High functional reliability Mechanical stops limit the actuator to -2° and $92^{\circ} \Varangle$. The internal limit switches interrupt the voltage supply to the motor. In addition, a motor thermostat provides overload protection because at $135^{\circ} \mathrm{C}$ it interrupts the voltage supply.

Combination butterfly valve actuators
For suitable butterfly valves, their permitted media temperatures and closing pressures are refered to the butterfly valve documentation.

Accessories

	Description
Electrical accessories PC-Tool MFT-P, beginning with v3.3 Cable ZK6-GEN Cable ZK2-GEN.	

Restrictions for 3-lead (and 4-lead) connector technologies

	The following overview shows the differences between the 24 V actuator wiring options. The same PCB (Print) can be used for both wirings.				
	3-lead connection				4-lead connection
Description	Signal and co connection	tion to pow	pply have	ame ground	Signal and connection to power supply have different ground connections
Supply voltage	AC only				AC / DC
Maximum cable length*	The maximum connection di	e length :	ed in the		
Wire cross-section	$0.75 \mathrm{~mm}^{2}$	$1.00 \mathrm{~mm}^{2}$	$1.50 \mathrm{~mm}^{2}$	$2.50 \mathrm{~mm}^{2}$	No limitation
SY 2	12 m	17 m	24 m	43 m	No limitation
SY 3	12 m	17 m	24 m	43 m	No limitation
SY 4	5 m	7 m	10 m	17 m	No limitation
SY 5	5 m	7 m	10 m	17 m	No limitation
Measuring voltage U5	U5 is stable a	n as the a	r stops		No limitation
Control signal mA	Not possible				The ground connection \perp must be wired to the actuator with mA control signal

* The limitation regarding cable length is because of the large amounts of current required by the SY actuator. A high level of current will in turn have an influence on the signals.

3-lead system connection

Electrical installation for 3-lead connection

Wiring diagrams

Functions with basic values - 3-lead connection technology

Override control with AC 24 V
with relay contacts

Remote control 0 ... 100\%

Master/Slave control (position-dependent)

Override control with AC 24 V
with rotary control switch

Minimum limit

Control with 4 ... 20 mA via external resistance

Functions for MF actuators with specific parameters - 3-lead connection technology

Restrictions for 4-lead (and 3-lead) connector technologies

	The following overview shows the differences between the 24 V actuator wiring options. The same PCB (Print) can be used for both wirings.				
	3-lead connection				4-lead connection
Description	Signal and connection to power supply have the same ground connection				Signal and connection to power supply have different ground connections
Supply voltage	AC only				AC / DC
Maximum cable length*	The maximum cable length is defined in the following connection diagram:				
Wire cross-section	$0.75 \mathrm{~mm}^{2}$	$1.00 \mathrm{~mm}^{2}$	$1.50 \mathrm{~mm}^{2}$	$2.50 \mathrm{~mm}^{2}$	No limitation
SY 2	12 m	17 m	24 m	43 m	No limitation
SY 3	12 m	17 m	24 m	43 m	No limitation
SY 4	5 m	7 m	10 m	17 m	No limitation
SY 5	5 m	7 m	10 m	17 m	No limitation
Measuring voltage U5	U 5 is stable as soon as the actuator stops				No limitation
Control signal mA	Not possible				The ground connection \perp must be wired to the actuator with mA control signal
	* The limitation regarding cable length is because of the large amounts of current required by the SY actuator. A high level of current will in turn have an influence on the signals.				

4-lead system connection

Electrical installation for 4-lead connection
Wiring diagrams

Dimensions [mm]

Settings

Important!

Settings are only allowed to be made by authorised specialist personnel.

Setting cam The setting cams for limit and auxiliary switches can be accessed by removing the housing cover.
Optionally, auxiliary switches LS4/LS3 can be connected for signaling.
Limit switches LS2/LS1 interrupt the voltage to the motor and are controlled by setting cams TC...
The setting cams turn with the spindle. The butterfly valve closes when the stem is turning clockwise (cw) and opens when the stem is turning counterclockwise (ccw).

Settings of setting cams TC.. •TC4 for auxiliary switch position closed (factory setting $3^{\circ} \Varangle$).

- TC3 for auxiliary switch position open (factory setting $87^{\circ} \nsucc$).
- TC2 for limit switch closed (factory setting $\left.0^{\circ} \Varangle\right)$).
- TC1 for limit switch open (factory setting $90^{\circ} \Varangle$).

Adjusting setting cams $\mathbf{1}$ Use a 2.5 mm Allen key to unscrew the corresponding setting cams TC..
2 Turn the setting cam using the Allen key
3 Set as shown in the illustration below
4 Use the Allen key to tighten the setting cams

Adaptation An adaptation must take place after the TC1 and TC2 have been adjusted.

Settings

Mechanical angle of rotation limitation

(continued)

The mechanical angle of rotation is set at the factory to $92^{\circ} \triangleleft$ and cannot be changed. The handwheel is rotated by means of a worm gear in a planetary gear unit. The gearing is stopped mechanically by means of two setscrews $\mathbf{1}$ and $2(11 / 2$ rotations of the setscrews correspond to $2^{\circ} \Varangle$).
Both limit switches LS2 /LS1 are set to $90^{\circ} \Varangle$ and must always switch off the motor before the mechanical angle of rotation limitation.

A Angle of rotation limiting OPEN $\left(90^{\circ} \Varangle\right)$
B Angle of rotation limiting CLOSED $\left(0^{\circ} \Varangle\right)$
C Connection of handwheel for angle of rotation limiting

Relationship between mechanical angle of rotation limiting, limit and auxiliary switches

1 Auxiliary switch TC3 / TC4
2 Limit switch TC1 / TC2
3 Mechanical angle of rotation limitation $(A+B)$

Connection and function elements

Further documentation - Complete overview «The complete range of water solutions»

- Data sheets, butterfly valves
- Installation instructions for actuators and/or butterfly valves, respectively
- Notes for project planning (hydraulic characteristic curves and circuits, installation regulations, commissioning, maintenance. etc.)

$$
\begin{aligned}
& 00 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

SY..-24-SR-T / SY..-24-MF-T / SY..-24-MP-T

Y 1	$\mathrm{~A}-\mathrm{AB}=100 \%$
$\curvearrowright \mathrm{Y} 2$	$\mathrm{~A}-\mathrm{AB}=0 \%$

SY..-24-SR-T / SY..-24-MF-T

Y 1	$\mathrm{~A}-\mathrm{AB}=100 \%$
IY2 2	$\mathrm{~A}-\mathrm{AB}=0 \%$

